

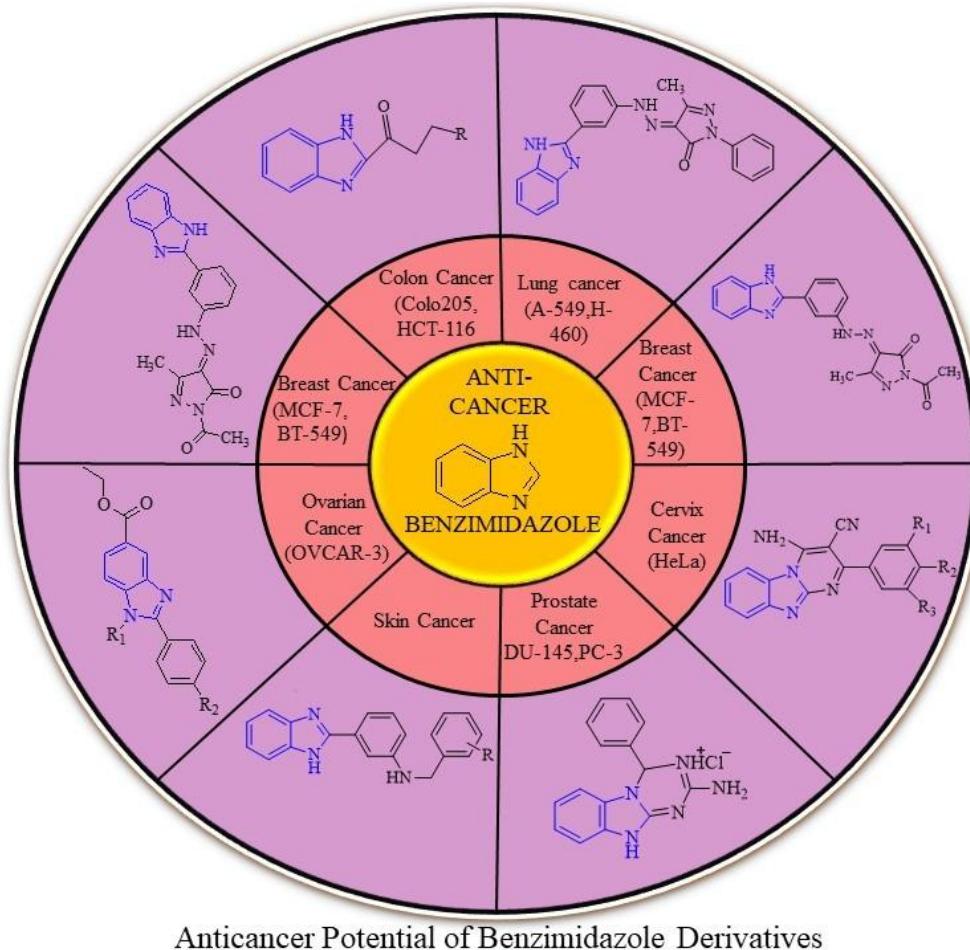
Recent Updates on Anticancer Potential of Benzimidazole Derivatives: A Review

Km Shabana¹, Salahuddin^{1*}, Avijit Mazumder¹, Rajnish Kumar¹, Vimal Datt¹, Sonakshi Tyagi¹

Noida Institute of Engineering and Technology (Pharmacy Institute), 19, Knowledge park-II, Greater Noida- 201306, Uttar Pradesh, India.

****Corresponding Author:***

Salahuddin


Sallu_05@yahoo.co.in, +91-9891872142

Recent Updates on Anticancer Potential of Benzimidazole Derivatives: A Review

Abstract

Benzimidazole is a heterocyclic compound containing benz annulated bicyclic nucleus that consists of a benzo-fused imidazole ring with a heteroatom at 1st and 3rd positions. Benzimidazole has shown many significant advances in synthetic chemistry as it grabbed the attention of many researchers and scientists because of its numerous pharmacological application such as Antiviral, Anti-HIV, Antiprotozoal, Antihypertensive, Anti-inflammatory, Analgesics, Antioxidants, and Anticonvulsants. Therefore, this review is compromised on the benzimidazole derivatives and their therapeutic activity that will further play a vital role in the discovery of a novel and active drug molecule.

Graphical Abstract

Anticancer Potential of Benzimidazole Derivatives

Keywords: Cancer, Benzimidazole, Synthesis, Anticancer activity, Structure-activity relationship, Patents.

1. Introduction

Cancer is the second most commonly leading cause of mortality nearly 10 million deaths have been reported in 2020 worldwide, and the World Health Organization estimates that 12-14 million people will develop cancer each year [1-3]. Cancer is a deadly disease whose prevalence is steadily increasing around the world. It is defined by the uncontrolled growth and multiplication of abnormal cells [4]. Death, continuous weight loss, paralysis, and bowel alteration are all possible symptoms of cancer [5]. According to the report of the American cancer society, cancer is a global health problem associated with the lung, breast, and central nervous system. Around 15.5 million living Americans have a history of cancer as of January 2016 [6, 7]. Chemotherapy and radiotherapy are the most often used treatment method but have suffered setbacks in the long-fought war against various tumors with multidrug resistance considered the most significant obstacle [8]. Some anticancer medicines such as carboplatin, oxaliplatin, and cisplatin are

commonly used in clinical practices around the world for the treatment of a variety of tumors [9] but these anticancer drugs show troublesome results such as harmfulness, bioavailability, and resistance. The complete eradication of cancer is medicine's greatest challenge [10]. Because of these issues, cancer therapy requires a significant focus on research and development. It has been observed that nitrogen-containing heterocyclic compounds play an essential part in the treatment of cancer. Benzimidazole belongs to the same class of heterocyclic compounds which exhibited several therapeutic potentials [11] such as antifungal [14-16], antibacterial [12,13], antiviral [17,18], glucosidase inhibitor [19,20], antihelminthic [23,24], antihypertensive [21,22], anti-inflammatory [25-27], antiprotozoal [28-30], anticonvulsant [31-33] etc., along with anticancer activity [34-37]. It is a bicyclic hetero-aromatic ligand that consists of a fused benzene ring with a 5-membered imidazole ring. The key mechanisms behind the anticancer potential of benzimidazole via inhibition of cyclin-dependent kinase, tyrosine kinase, and destroying DNA [38, 39, 41]. Benzimidazole derivatives have shown substantial anticancer action, particularly on the MCF-7 breast cancer cell line [42]. It has also been shown to limit endothelial cell development and decrease *in vivo* and *in vitro* angiogenesis [43]. In 1963, bendamustine is the first benzimidazole-based anticancer drug marketed successfully as the alkylating agent which is used in the management of indolent non-Hodgkin Lymphoma [44]. Further, two others are marketed as anticancer drugs such as Nocodazole and dovitinib (TKI258). Nocodazole acts via interference with apical protein in cultured intestinal epithelial cells (CaCo₂), and Dovitinib acts as a tyrosinase kinase receptor inhibitor [45, 46] other than these anticancer agents, several marketed drugs are also available which contain benzimidazole rings such as Omeprazole and Rabeprazole as proton pump inhibitors [47, 48], Albendazole, and Thiabendazole as antihelminthic [49, 50], and candesartan as anti-hypertensive agent [51]. Keeping the view of the importance of benzimidazole in mind, this review highlights the synthetic approaches for anticancer benzimidazole derivatives with their structure-activity relationship studies. To provide a piece of vast knowledge to the medicinal chemist for the future development of anticancer agents.

2. Table 1. Marketed Anticancer drugs containing benzimidazole ring

S.No	Drug	Structure	Uses
------	------	-----------	------

01	Bendamustine		Indolent B-cell non-Hodgkin's lymphoma (NHL) and Chronic lymphocytic leukemia.
02	Nocodazole		Cdk4- and Cdk2-cyclin complexes inhibitors.
03	Dovitinib		Prostate cancer cell line inhibitor via FGFR1 mediates the anticancer activity.

3. Synthetic approach for anticancer benzimidazole derivatives

Raka et al., reported and evaluated substituted 2-benzyloxymethyl-benzimidazoles (**1 and 2**) shown in figure 1, for *in vitro* cytotoxicity. Among the reported derivatives 1-(4-hydroxybenzyl)-2-(4-hydroxyphenyl)-1H-benzimidazole (**1**), 1-(4-chlorobenzyl)-2-(4-chlorophenyl)-1H-benzimidazole (**1**), 1-(4-methoxybenzyl)-2-(4-methoxyphenyl)-1H benzimidazole (**1**) and 2-Benzyloxymethyl-1H-benzimidazole (**2**) showed good anticancer activity [52].

Sathyaranayana et al., reported several novel benzimidazole derivatives (**3**) shown in figure 1, and these were assayed for *in vitro* cytotoxic activity on cell lines i.e., HeLa and A549. Among the reported derivatives ethyl 2-((4-chlorobenzyl) oxy)-3-methoxyphenyl)-1-pentyl-1H-benzo[d]imidazole-5-carboxylate (**3**) caused maximum cell death in both cell lines [53].

Sireesha et al., reported several benzimidazole-linked β -carbolines based derivatives (**4**) shown in figure 1, all new derivatives were evaluated for their anti-proliferative action on Colo-205, A549, MCF-7 and A2780 cell lines by MTT method. Among the reported derivatives 1-(2-(5,6-dimethoxy-1H-benzo[d]imidazol-2-yl) thiazol-4-yl) -9H-pyrido[3,4-

b] indole (**4**) and 1-(2-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl) thiazol-4-yl) -9H-pyrido[3,4-b] indole (**4**) were found to be most potent against all cell lines [54].

Ren et al., reported pyrazole containing benzimidazole analogues(**5**) **shown in figure 1**, and their *in vitro* cytotoxicity was determined on different cell lines such as, Huh-7, MCF-7 and HCT116. Results revealed that compound 2-[3-(4-Bromo-phenyl)-1-phenyl-1H-pyrazol-4-yl]-1-methyl-1H-benzimidazole (**5**) showed imperative anti-proliferative action on HCT-116 cell lines[55].

Chen et al., reported amide analogues of 2-ethoxy-3-[2'-(1H-tetrazole-5-yl)-biphenyl-4-ylmethyl]-3H-benzimidazole-4-carboxylic acid (**6**)**shown in figure 1**, these derivatives were evaluated for their *in vivo* cytotoxicity against A549 cancer cell line by neddylation inhibition method. Analogue 1-((2'-(1H-tetrazol-5-yl)-[1,10-biphenyl]-4-yl)methyl)-N-(2,4-dichlorophenethyl) -2-ethoxy 1H-benzo[d]imidazole-7-carboxamide(**6**) exhibited higher neddylation enzyme inhibition compared with CDC, along with promising inhibitory potential of target and killing selective cancer cell [56].

Tang et al., reported and evaluated 2- (1- (4,4-difluorocyclohexyl) piperidine-4-yl) -1H-benzo [d] imidazole-4- carboxamide derivatives (**7**)**shown in figure 1**, for their *in vitro* cytotoxicity against MDA-MB-231, PARP1, PARP2, MCF-7, MDA-MB-436, and CAPAN-1, using veliparib as standard. The synthesized compound exhibited a higher anticancer potential to tumor cell lines and have a significant effect on PARP1/2 inhibitory action [57].

Atmaca et al., reported 2-[5,6-dichloro-2-ethyl-1H-benzimidazol-1-yl]-N-[4-bromophenylene] acetohydrazide (**8**)**shown in figure 1**. The cytotoxic activity of the compound was evaluated against HEK-293 and selected human cancer cell lines assessed by the MTT test. The compound showed prominent cytotoxic activity against DU-145, MCF-7, HEK-293 (human embryonic kidney), and H69AR cell lines [58].

Haoran et al., reported 2-(1H-benzimidazol-2-ylmethylsulfanyl)-4-(4-methoxy-phenyl)-pyrimidine-5-carbonitriles (**9**) **shown in figure 1**, and Cytotoxic activity of reported compounds was tested by National Cancer Institute. Results showed that 2-{(1H-benzimidazol-2-yl) methylthio}-4-(4-methoxyphenyl)-6-morpholinopyrimidine-5-carbonitrile (**9**) exhibited the most potent activity against T-47D and HOP-92 cancer cell lines [59].

Li et al., reported metal transition analogues based on benzimidazole-quinoline derivatives (**10**) that is $[\text{Cu}(\text{L})\text{Br}_2]_2$, $[\text{Cu}(\text{L})\text{Cl}_2]_2$ and $\text{Pt}(\text{L})\text{Cl}_2$ (where $\text{L} = 2-((2-(\text{pyridin}-$

2-yl)-1H-benzo[*d*] imidazolyl) methyl) quinolone) **shown in figure 1**. All the reported derivatives tested for cytotoxicity against SMMC7721. Compound [Cu(2-(pyridin-2-yl)-1H-benzo[*d*]imidazolyl) methyl) quinolone) Cl₂]₂ (**10**) showed most potent cytotoxicity [60].

Capanet al., reported substituted benzimidazole analogues (**11**) **shown in figure 1**, the cytotoxic potential on Panc-1, MDA-MB-231, Ovcar3, and A549 cell lines via MTT test was assayed. Among the reported analogues 4-[1-(2-Chloro-benzoyl)-1H-benzoimidazol-2-yl]-4-aza-tricyclo [5,2,1,2,6] dec-8-ene-3,5-dione (**11**) demonstrated most potent cytotoxic potential against all cell lines [61].

Shinde et al., reported benzimidazole nucleosides (**12**) **shown in figure 1**, all reported compounds assayed cytotoxicity on MDA-MB-231 cancer cell line using standard etoposide. Among the reported compounds 3'-azide nucleosides 4-azido-2-benzoimidazol-1-yl-5-hydroxymethyl-tetrahydro-furan-3-ol (**12**), 4-azido-5-hydroxymethyl-2-(2-methyl-benzoimidazol-1-yl)-tetrahydro-furan-3-ol (**12**), 4-azido-5-hydroxymethyl-2-(2-phenyl-benzoimidazol-1-yl)-tetrahydro-furan-3-ol (**12**), and 4-azido-5-hydroxymethyl-2-(2-anthryl-benzoimidazol-1-yl)-tetrahydrofuran-3-ol (**12**) have potent anticancer activity [62].

Kacar et al., reported the compound Copper (II)-1-(4-(trifluoromethyl) benzyl)-1H-benzimidazole (**13**) **shown in figure 2**. Anti-cancer activity of copper (II) complex was evaluated via MTT assay. It was found that compound exhibited good anticancer activity [63].

Karadayiet al., reported novel ethyl-sulfonyl indole-benzimidazole derivatives (**14**) **shown in figure 1**, and their anticancer activity was screened on MCF-7 and TP53 (breast cancer cells) against tivozanib, bazedoxifene, and vincristine, as standard. Among the reported derivatives 2-(5-bromo-1H-indol-3-yl)-5-(ethylsulfonyl)-1-(4-fluorobenzyl)-1H-benzo[*d*]imidazole (**14**) found to have most significant activity [64].

Yuan et al., reported and evaluated 6-amide-2-aryl-benzimidazole (**15**) **shown in figure 2**, for *in vitro* antitumor potential on various cell lines, MDA-MB-231, HUVEC, A549 and HepG2 and selective inhibition on VEGFR-2. Compound N-(2-(4-chlorophenyl)-1H-benzo[*d*]imidazol-5-yl)-2-(4-methoxyphenyl) acetamide (**15**) showed the most potent effect on HepG2 and HUVEC cell lines [65].

Mostafa et al., reported 2-phenyl benzimidazole-based analogues (**16,17**) **shown in figure 2**, these derivatives were tested for *in vitro* cytotoxicity against MCF-7 cell line. Compound 3-(1H-benzo[*d*]imidazol-2-yl)-N-(4-nitrobenzyl) aniline (**16**), 3-(1H-

benzo[d]imidazol-2-yl)-N-(2,6-dichlorobenzyl) aniline (16) and 1-(3-(1H-benzo[d]imidazol-2-yl) phenyl)-3-(4-nitrophenyl) thiourea (17) showed most significant cytotoxic potential against MCF-7 cell lines [66].

Jian et al., reported novel tertiary N-[2-(1H-benzoimidazol-2-yl)-ethyl]-4-methyl-N-(3,4,5-trimethoxy-phenyl)-benzenesulfonamide analogues (18) shown in figure 2, and anti-cancer activity of the reported analogues was screened against tumour cell lines such as PC-3, MGC-803 and MCF-7 via *in vitro* method and used 5-fluorouracil as standard. Analogue N-((3a,7a-dihydro-1H-benzo[d]imidazol-2-yl) methyl)-4-Methyl-N-(3,4,5-trimethoxyphenyl) benzene-sulfonamide (18) showed the prominent inhibition of proliferation of SGC-7901, and HGC-27 with good selectivity between normal and abnormal cells [67].

Goud et al., reported various 1-benzyl-benzimidazole derivatives by using N¹-Benzyl-4-chlorobenzene-1,2-diamine (19) shown in figure 2, and the anticancer activity was tested against various cell lines MCF-7, A-549, HT-29, HCT-116, MDA-MB-231 and DU-145 with reference of 5-fluorouracil. Compound 4-(1-benzyl-5- chloro-1H-benzo[d]imidazol-2-yl)-N-(4-hydroxyphenyl) benzamide (19) exhibited most significant activity against MCF-7 [68].

Ceviket al., reported 4-(5(6)-substituted-1H-benzimidazol-2-yl)-N-furan-2-yl/ thiophene methylene) benzo hydrazides (20) shown in figure 2, and *in vitro* anticancer activity of the compound was evaluated by MTT assay against cell lines: MCF-7, A549, and NIH/3T3. Among the reported derivatives 4-(5(6)-chloro-1H-benzimidazol-2-yl)-N-(5-methyl thiophene-2-yl-methylene) benzo hydrazide (20) showed higher cytotoxicity against MCF-7 cell line with respect to reference cisplatin [69].

Yadav et al., reported a series of benzimidazole derivatives (21) shown in figure 2, and *in vitro* anticancer activity of the derivatives were assessed against breast cancer cell line. Results showed that (1H-benzoimidazol-2-ylsulfanyl)-acetic acid (4-hydroxy-naphthalen-1-ylmethylene)-hydrazide (21) displayed a potent anticancer agent than 5-fluorouracil against breast cancer cell line [70].

Sinemet al., reported some novel 4-(5-chloro-1H-benzimidazol-2-yl)-benzoic acid benzylidene hydrazides (22) shown in figure 2, and were evaluated for their antitumor potential on MCF-7 and A549 cell lines by using positive control cisplatin. The 4-(5-chloro-1H-benzimidazol-2-yl) benzoic acid 2,4-dichlorobenzylidene hydrazide (22) and

4-(5-Chloro-1H-benzimidazol-2-yl) benzoic acid 2-nitrobenzylidene hydrazide (**22**)compounds showed significant inhibitor potential against cancer cells [71].

Abdelgawad et al., reported 2-acetyl-4-[(3-(1H-benzimidazol-2-yl)-phenyl]-hydrazone-5-methyl-2,4-dihydropyrazol-3-one(**23**) and 4-{{3-(1H-Benzimidazol-2-yl)-5-methyl-2-phenyl-2,4-dihydro-pyrazol-3-one (**24**)shown in figure 2. The compound was evaluated against A549 and MCF-7 cell lines for cytotoxic activity and exhibits excellent activity[72].

Kartikeyan et al., reported 2-(phenyl)-3H-benzo[d]imidazole-5-carboxylic acid derivatives (**25**)shown in figure 2, and screened them for their *in vitro* cytotoxicity against cancer cell lines i.e., MDA-MB468, MDA-MB231 and MCF7 by using cisplatin as a standard. The compound Methyl-2-(5-fluoro-2-hydroxyphenyl)-1Hbenzo[d]imidazole-5-carboxylate (**25**)showed the most promising activity against MCF-7 cell lines [73].

Wu et al., reported novel benzimidazole-2-substituted phenyl or pyridine propylketenes(**26**)shown in figure 3, and *in vitro* anticancer activity was analysed for all the reported compounds against MCF-7, HepG2, and HCT116 cell lines. Among the reported analogues 1-(1H-benzo[d]imidazol-2-yl)-3-(pyridin-2-yl)-prop-2-enone (**26**), 1-(1H-benzo[d]imidazol-2-yl)-3-(3-chlorophenyl)-prop-2-enone (**26**) and 1-(1H-benzo[d]imidazol-2-yl)-3-(3-methoxyphenyl)-prop-2-enone (**26**)exhibited most significant activity against irinotecan as positive control [74].

Sharma et al., reported several benzo[d]imidazol-2-yl) methylene) indolin-2-ones (**27**)shown in figure 3, and tested for their cytotoxicity on MCF-7,4T1, A549, HGC, MCF10A, PC-3, DU-145, BT-549 and MDA-MB-231 cell lines. Results revealed that 5-bromo-3-((1-isopropyl-benzo[d]imidazol-2-yl)methylene)indolin-2-one (**27**) found to be active on MDA-MB-231, whereas compounds 5-fluoro-3-((1-isopropyl-benzo[d]imidazol-2-yl)methylene)indolin-2-one (**27**), 5-chloro-3-((1-isopropyl-benzo[d]imidazol-2-yl)methylene)indolin-2-one (**27**), and 3-((1-isopropyl-benzo[d]imidazol-2-yl)methylene)-5-methylindolin-2-one (**27**) showed good activity against MCF-10A [75].

Lonelet et al., reported the 2-benzimidazol-1-yl-N-quinolin-8-yl-acetamide (**28**)shown in figure 3, and evaluated for tumour inhibitory potential against MDA-MB-468 and A-498 cell lines. The reported derivative exhibited the most potent activity against the tested cell lines [76].

Shaaban et al., reported 2-substituted benzimidazoles (**29-34**) shown in figure 3, and compounds tested for *in vitro* anti-proliferative activity on SF-268 NCI-H460 and MCF-7 by using doxorubicin as standard. Among the reported compounds 2-(2-(1H-benzo[d]imidazol-2-yl)-3-bromo-2-oxopropylidene)hydrazine)benzoic acid (**29**), 2-[3-(1H-benzo[d]imidazol-2-yl)-5-cyano-4-methyl-6-oxopyridazin-1(6H)-yl]benzoic acid (**30**), 2-(2-(1-amino-11-oxobenzo[4,5]imidazo[1,2-a]thieno[3,4-d]pyridin-4(11H)ylidene)hydrazinyl)benzoic acid (**31**), 2-(2-((1H-benzo[d]imidazol-2-yl)(2-(cyanomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methylene)hydrazine)benzoic acid (**32**), 2-{4-(1H-benzo[d]imidazol-2-yl)-7-[(4-fluoro-benzylidene)-amino]-1-oxo-1H-thieno[3,4-d] pyridazin-2-yl}benzoic acid (**33**), 2-[2-(2-amino-1-(1H-benzo[d]imidazol-2-yl)-2-hydrazoneoethylidene) hydrazine]benzoic acid (**34**) showed excellent cytotoxicity against tested cell lines [77].

Abdallah et al., design and reported a series of benzimidazoles (**35-38**) shown in figure 3, and evaluated them *in vitro* for anticancer activity against human cancer cell line NUGC, DLDI, HA22T, HEPG2, HONE1, HR, MCF, WI38 by using reference drug CHS828. Results showed that 2-[2-(1H-benzimidazol-2-yl)-1-methyl-ethylidene]-malononitrile (**35**), 1-(1H-benzimidazol-2-yl)-1-hydrazoneo-propan-2-one (**36**), 1H-benzimidazol-2-yl-hydrazoneo-acetonitrile (**37**) and 3-imino-2-phenyl-hydrazoneo-3,4-dihydro-2H-benzo[4,5]-imidazo[1,2-c] pyrimidine-1-thione (**38**) possess most potent anticancer activity [78].

Reddy et al., reported novel pyrazole containing benzimidazole derivatives (**39**) shown in figure 3, further the compounds were tested for their cytotoxicity against several tumour cell lines i.e., A-549, MCF-7, and HeLa. Derivatives 6-bromo-2-(1,3-diphenyl-1H-pyrazol-4-yl)-1H-benzo[d]imidazole (**39**), 5-fluoro-2-(3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl)-1H-benzo[d]imidazole (**39**), and 5-chloro-2-(3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl)-1H-benzo[d]imidazole (**39**) found to have considerable growth inhibitory capability against all cancer cell lines as compare to standard 5-fluorouracil [79].

Risleyet al., reported pyrimido-[1,2-a] benzimidazole-based analogues (**40**) shown in figure 3, and these compounds were tested on two types of breast and pancreatic cancer cell lines. The compound 4-amino-2-(3,5-dibromophenyl) pyrimido[1,2-a] benzimidazole-3-carbonitrile (**40**) and 4-amino-2-(3,4,5-trimethoxyphenyl) pyrimido[1,2-a] benzimidazole-3-carbonitrile (**40**) exhibited prominent cytotoxicity [80].

Swiatkiewicz et al., reported the novel N-oxide of benzimidazole-4,7-diones(**41**)**shown in figure 3**, and the derivative was tested cytotoxicity on A549 cell lines using WST-1 test. According to the results 2-(4-chlorophenyl)-1H-benzimidazol-4,7-dione N-oxide (**41**) and 2-(2-nitrophenyl)-1H-benzimidazol-4,7-dione N-oxide (**41**) was found to be the more potent anti-proliferative agent [81].

Yoon et al., reported novel 2-phenyl-3H-benzimidazole-5-carboxylic acid ethyl ester derivatives (**42**)**shown in figure 3**, and investigated them for their SIRT1 and SIRT2 inhibition and MDA-MB-468, HCT-116 and CCRF-CEM cancer cells lines. According to the results ethyl-2-(4-(dimethyl amino)-phenyl)-1-phenyl-1H-benzo [d]imidazole-5-carboxylate (**42**) have the inhibitory action for SIRT1 as well as for SIRT2 and significant activity against the tested cell lines [82].

Noolviet et al., reported 3-chloro-1-(1-methyl-1H-benzimidazol-2-yl)- (4'-substituted)-phenylazetidin-2-one derivatives (**43**)**shown in figure 3**, these derivatives were investigated for *in vitro* proliferative inhibition of MCF-7 cell lines using cyclophosphamide as standard. Results showed that 3-Chloro-4-(2,5-dimethoxyphenyl)-1-(1-methyl-1Hbenzimidazol-2-yl)azetidin-2-one (**43**) and 3-Chloro-4-(2-chlorophenyl)-1-(1-methyl-1H-benzimidazol-2-yl)azetidin-2-one (**43**) exhibited significant cytotoxic activity [83].

Paul et al., reported coumarin–Benzimidazole hybrid 7-(substituted)-amino-3-(benzimidazol-2-yl)-2H-1-benzopyran-2-one derivatives (**44**) **shown in figure 4**, *in vitro* cytotoxicity of compound tested against cancer cell lines by using standard drug 5-fluorouracil. Derivative 7-ethanolamino-3-(1H-benzimidazol-2-yl)-2H-1-benzopyran-2-one (**44**) showed pronounced activity against HCC-2998, HCT-116, CCRF-CEM, MCF-7, LOX IMVI cell lines. [84].

Yurttas et al., reported 1-(2-aryl-2-oxoethyl)-2-[(morpholine-4-yl)-thioxo-methyl] benzimidazoles(**45**) **shown in figure 4**, screened them for anti-proliferative activity using MTT and BrdU methods against C6, A549 and MCF-7 tumour cell lines. Compound 1-[2-(4-chlorophenyl)-2-oxoethyl]-2-[(morpholine-4-yl)-thioxomethyl] benzimidazole (**45**) exhibited substantial selectivity on the C6 cell and MCF-7 line [85].

Shekeilet et al., reported and screened 4-amino-2-phenyl-benzo[4,5]imidazo [1,2-a]pyrimidine-3-carbonitrile derivatives (**46**) **shown in figure 4**, for *in vitro* anti-cancer activity on HeLa and PC3 cancer cell lines. The compound (N- (3,4-dimethoxyphenyl) methylene)- 1H- benzimidazol- 2- amine (**46**), and (N- (3,4,5- trimethoxy-

phenyl)methylene]- 1H- benzimidazol- 2- amine (**46**) showed restricted cytotoxicity except for compound (N- (4- methoxyphenyl) methylene] - 1H- benzimidazol - 2- amine (**46**) that exhibited moderate cytotoxic potential towards HeLa cell line [86].

Hranjec et al., reported 2-amino-4-aryl-4,10-dihydro[1,3,5] triazino[1,2-a]benzimidazole hydrochloride salts (**47**) **shown in figure 4**, and anti-proliferative activity of these analogues was assayed against HCT116, MCf-7, H460 cell lines. Among the reported analogues 2-amino-4-(4'-diethylamino-biphenyl-4-yl)-4,10-dihydro-benzo [4,5] imidazole[1,2-a] [1,3,5] triazin-3-ium chloride (**47**) was found to be most active cytotoxic at the highest concentration [87].

Refaat et al., reported a novel series of substituted 1-oxo-1,5-dihydro-benzo[4,5] imidazo[1,2-a]pyridine-4-carbonitrile (**48**) **shown in figure 4**, and these derivatives were tested for *in vitro* antitumor action against MCF-7 cell line using standard drug doxorubicin. Among the reported derivatives 8-chloro-3-methyl-1-oxo-1,5-dihydro-benzo [4,5] imidazole[1,2-a] pyridine-4-carbonitrile (**48**), 8-chloro-1-oxo-3-phenyl-1,5-dihydro-benzo [4,5] imidazo[1,2-a]pyridine-4-carbonitrile (**48**), and 4-cyano-1-oxo-3-phenyl-1,5-dihydro-benzo[4,5]imidazo[1,2-a]pyridine-8-carboxylic acid (**48**) exhibited most significant anticancer activity against MCF7 [88].

Rashid et al., reported 1-(1H-benzo[d]imidazol-2-yl)-3-(1,3,4-oxadiazol-5-substituted) analogues (**49**) **shown in figure 4**, these ligands tested for *in vitro* proliferation inhibition for the management of cancer. The compound 1-(1H-benzimidazol-2-yl)-3-[5-(2,4-dichlorophenyl)-1,3,4-oxadiazol-2-yl] propan-1-one have (**49**) showed significant proliferation inhibition activity [89].

Demirayaket al., reported 1-(2-aryl-2-oxoethyl)-2-aryloylbenzimidazoles(**50**) **shown in figure 4**, and these analogues were investigated for *in vivo* cytotoxic activity in comparison with standard drugs melphalan and cisplatin. Among the reported analogues 2-(2-benzoyl-benzoimidazol-1-yl)-1-phenyl-ethanone (**50**), 2-(2-benzoyl-benzoimidazol-1-yl)-1-p-tolyl-ethanone (**50**), and 1-(2-(4-methoxyphenyl)-2-oxoethyl)-2-benzoylbenzimidazole (**50**) showed the most promising anticancer activity [90].

Li et al., reported the 2-aryl benzimidazole derivatives (**51**) **shown in figure 4**, and these were tested for their cytotoxicity against HepG-2 and kinases cell lines. According to the results 2-chloro-N-(2-p-tolyl-1H-benzo[d]imidazol-5-yl) acetamide (**51**) and 2-chloro-N-(2-(1-methyl-1H-pyrrol-2-yl)-1H-benzo[d]imidazol-5-yl) acetamide showed great EGFR inhibitory in kinase assay and limited inhibitory activities against PDGFR, VEGFR-2,

and compound 2-chloro-N-(2-(1-methyl-1H-pyrrol-2-yl)-1H-benzo[d]imidazol-5-yl) acetamide (**51**) exhibited high cytotoxicity against HepG-2 cells [91].

Aziz et al., reported ethyl 6-bromo-3-methyl-1,3-thiazolo[3,2-a] benzimidazole-2-hydrazide and carboxylate derivatives (**52**) **shown in figure 4**, *in vivo* anti-proliferative activity were tested for all the reported derivatives on Hep-G2 and HCT-11. Compounds amino-1-[(6-bromo-3-methyl-1,3-thiazolo[3,2-a] benzimidazol-2-yl) carbonyl]-pyrazole-4-carbonitrile (**52**) and ethyl 5-amino-1- [(6-bromo-3-methyl [1,3] thiazolo[3,2-a] benzimidazol-2-yl) carbonyl]-pyrazole-4-carboxylate (**52**) showed most potent activity as compared to paclitaxel as reference drug [92].

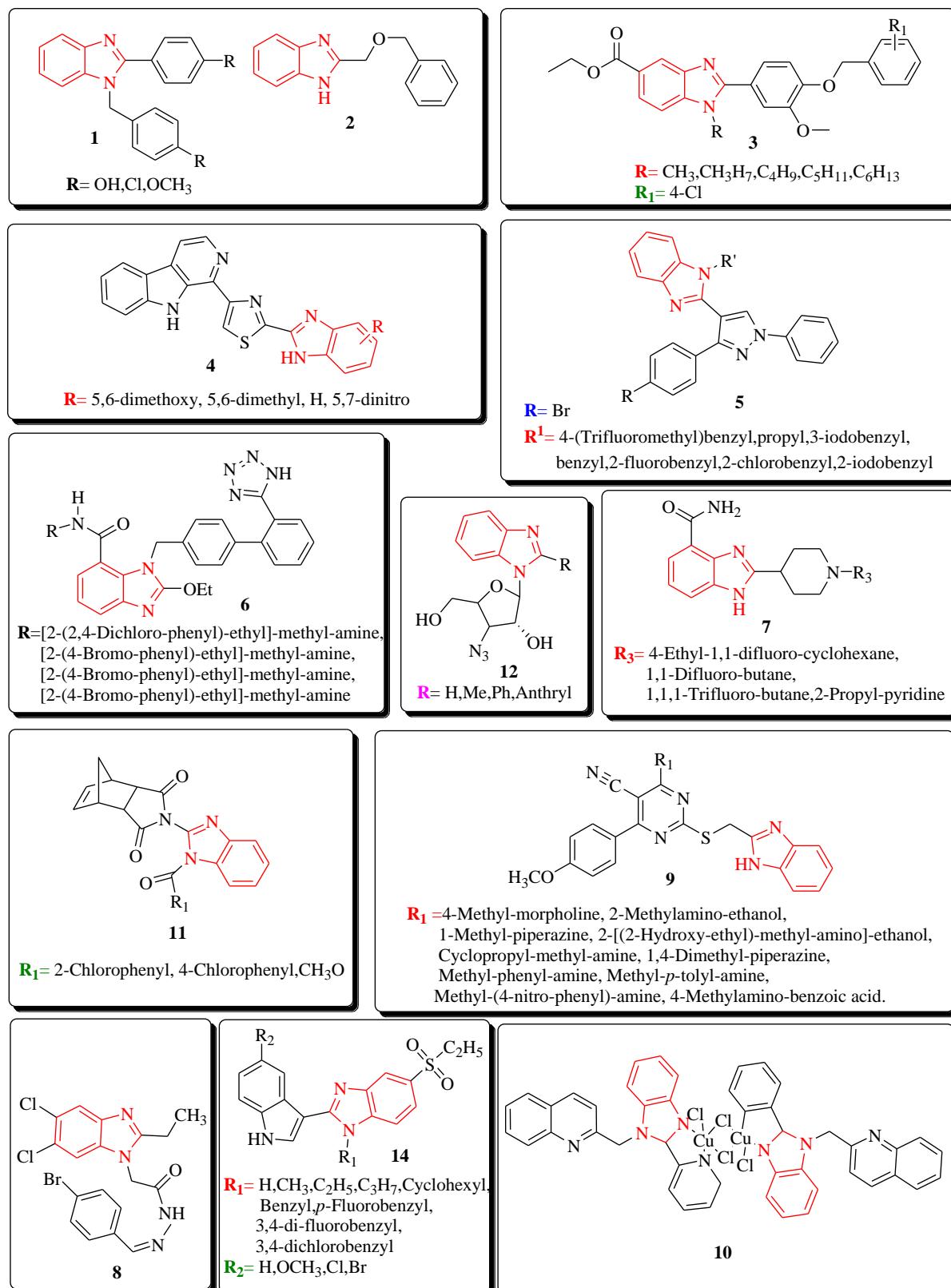


Figure 1: Anticancer potential of benzimidazole derivatives

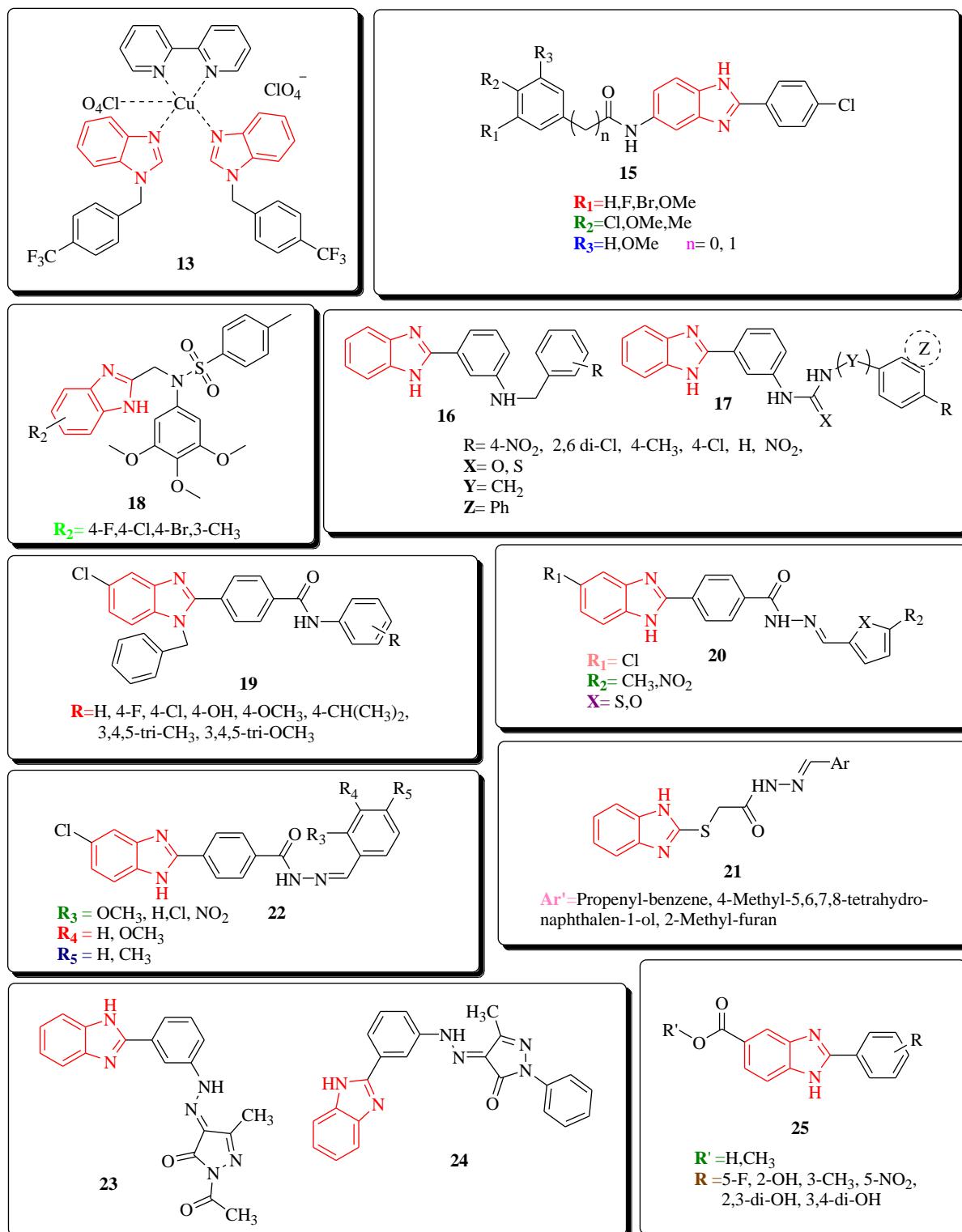


Figure 2: Anticancer potential of benzimidazole derivatives

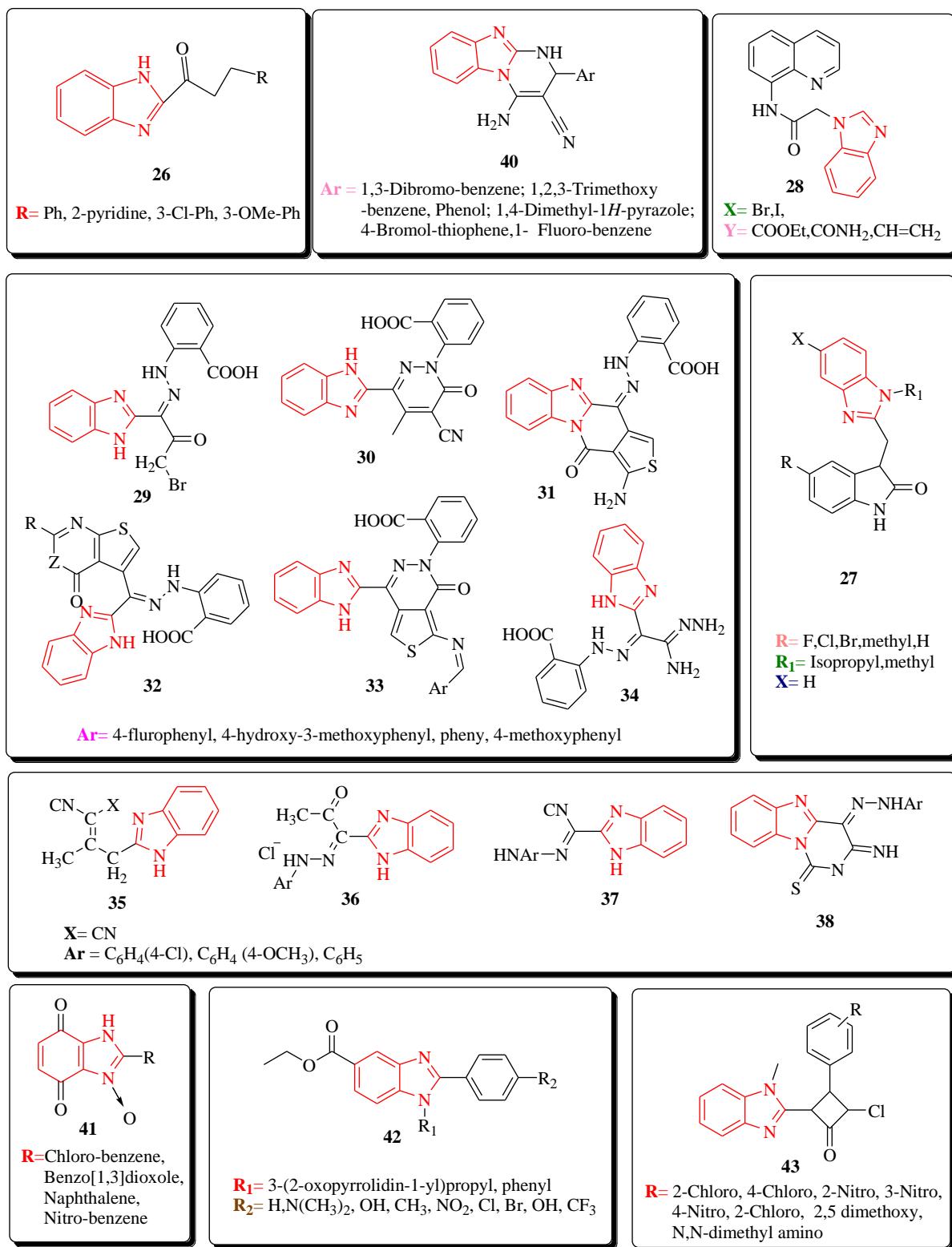


Figure 3: Anticancer potential of benzimidazole derivatives

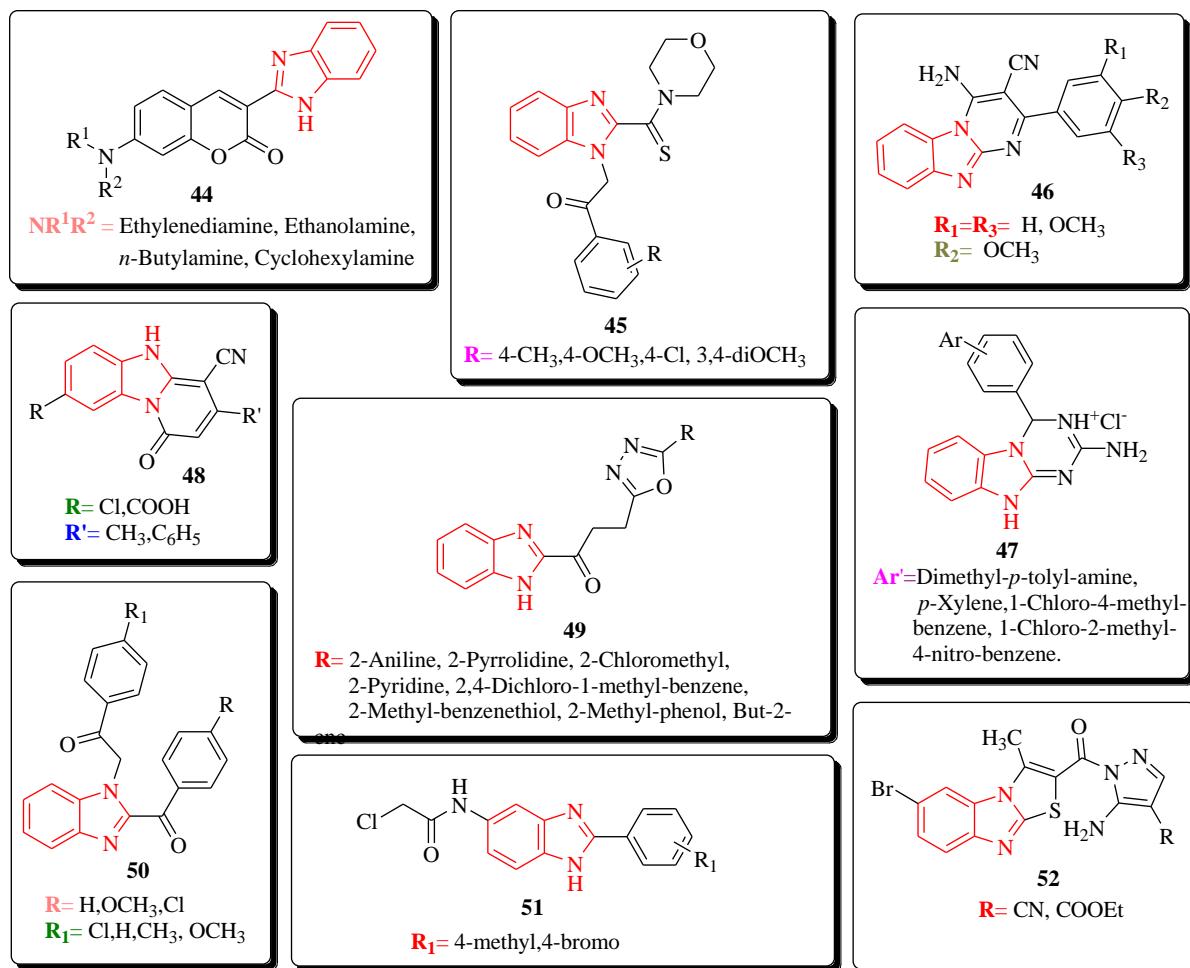


Figure 4: Anticancer potential of benzimidazole derivatives

Conclusion

This study summarizes the different benzimidazole derivatives and their pharmacological potential, and further based on this study and on the published data we conclude that benzimidazole scaffolds is versatile molecule and have potent anticancer activity. However, the activity of benzimidazole derivatives can be enhanced by the addition of different moieties. Thus, the attachment of different moieties and their effect should be considered in future studies so that benzimidazole can be used effectively.

Conflict of Interest

The authors confirm that this article's content has no conflict of interest.

Acknowledgment

We are highly thankful to the faculty of Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida (U.P.), 201306 for their support and guidance at every step.

Reference

- 1) DeSantis, C., Ma, J., Bryan, L., Jemal, A. Breast cancer statistics, 2013. *CA-Cancer J. Clin.*, **2014**, 64, 52-62.
- 2) Bilal, A., Naveed, N., Haider, MS. A Brief note on Cancer and its Treatment. *Occup. Med. Health Aff.*, **2021**, 9, 1-3.
- 3) Patel, HD., Divatia, SM., Clercq, ED. Synthesis of some novel thiosemicarbazone derivatives having anti-cancer, anti-HIV as well as anti-bacterial activity. *Indian J. Chem.*, **2013**, 52B, 535-545.
- 4) Birner, P., Prager, G., Streubel, B. Molecular pathology of cancer: How to communicate with the disease. *ESMO open.*, **2016**, 1, 1-7.
- 5) Zhang, T., Yang, X., Zhou, J., Liu, P., Wang, H., Li, A., Zhou, Y. Benzodiazepine drug use and cancer risk: a dose-response meta-analysis of prospective cohort studies. *Oncotarget.*, **2017**, 24, 102381-102391.
- 6) Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, DM., Piñeros, M., Znaor, A., Bray, F. Cancer statistics for the year 2020: An overview. *Int. J. Cancer.*, **2021**, 15, 778-789.
- 7) Eggert, J. Genetics and genomics in oncology nursing: what does every nurse need to know? *Nurs. Clin.*, **2017**, 1, 1-25.
- 8) Saha, S., Adhikary, A., Bhattacharyya, P., Das, T., Sa, G. Death by design: where curcumin sensitizes drug-resistant tumours. *Anticancer Res.*, **2012**, 1, 2567-2584.
- 9) Florea, AM., Büsselberg, D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. *Cancers.*, **2011**, 3, 1351-1371.
- 10) Akhter, S., Ahmad, I., Ahmad, MZ., Ramazani, F., Singh, A., Rahman, Z., Ahmad, FJ., Storm, G., Kok, RJ. Nanomedicines as cancer therapeutics: current status. *Curr. Cancer Drug Targets.*, **2013**, 1, 362-378.
- 11) Yadav, G., Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. *Eur. J. Med. Chem.* **2015**, 5, 419-443.
- 12) Song, D., Ma, S. Recent development of benzimidazole- containing antibacterial agents. *Chem. Med. Chem.*, **2016**, 5, 646-659.
- 13) Picconi, P., Hind, C., Jamshidi, S., Nahar, K., Clifford, M., Wand, ME., Sutton, JM., Rahman, KM. Triaryl benzimidazoles as a new class of antibacterial agents against resistant pathogenic microorganisms. *J. Med. Chem.*, **2017**, 27, 6045-6059.

14) Chandrika, NT., Shrestha, SK., Ngo, HX., Garneau-Tsodikova, S. Synthesis and investigation of novel benzimidazole derivatives as antifungal agents. *Bioorg. Med. Chem.*, **2016**, 15, 3680-3686.

15) Morcoss, MM., El Shima, MN., Ibrahem, RA., Abdel-Rahman, HM., Abdel-Aziz, M., Abou El-Ella, DA. Design, synthesis, mechanistic studies and in silico ADME predictions of benzimidazole derivatives as novel antifungal agents. *Bioorg. Chem.*, **2020**, 1, 1-43.

16) Si, W., Zhang, T., Li, Y., She, D., Pan, W., Gao, Z., Ning, J., Mei, X. Synthesis and biological activity of novel benzimidazole derivatives as potential antifungal agents. *Pestic. Sci.*, **2015**, 20, 15-19.

17) Kanwal, A., Ahmad, M., Aslam, S., Naqvi, SA., Saif, MJ. Recent advances in antiviral benzimidazole derivatives: a mini review. *Pharm. Chem. J.*, **2019**, 53, 179-187.

18) Tonelli, M., Novelli, F., Tasso, B., Vazzana, I., Sparatore, A., Boido, V., Sparatore, F., La Colla, P., Sanna, G., Giliberti, G., Busonera, B. Antiviral activity of benzimidazole derivatives. III. Novel anti-CVB-5, anti-RSV and anti-Sb-1 agents. *Bioorg. Med. Chem.*, **2014**, 1, 4893-4909.

19) Zawawi, NK., Taha, M., Ahmat, N., Ismail, NH., Wadood, A., Rahim, F. Synthesis, molecular docking studies of hybrid benzimidazole as α -glucosidase inhibitor. *Bioorg. Chem.*, **2017**, 1, 184-191.

20) Asemanipoor, N., Mohammadi-Khanaposhtani, M., Moradi, S., Vahidi, M., Asadi, M., Faramarzi, MA., Mahdavi, M., Biglar, M., Larijani, B., Hamedifar, H., Hajimiri, MH. Synthesis and biological evaluation of new benzimidazole-1, 2, 3-triazole hybrids as potential α -glucosidase inhibitors. *Bioorg. Chem.* **2020**, 1, 1-29.

21) Zhang, Y., Xu, J., Li, Y., Yao, H., Wu, X. Design, Synthesis and Pharmacological Evaluation of Novel NO- Releasing Benzimidazole Hybrids as Potential Antihypertensive Candidate. *Chem. Biol. Drug Des.*, **2015**, 85, 541-548.

22) Khan, MT., Razi, MT., Jan, SU., Mukhtiar, M., Gul, R., Hussain, A., Rabbani, I. Synthesis, characterization and antihypertensive activity of 2-phenyl substituted benzimidazoles. *Pak. J. Pharm. Sci.*, **2018**, 1, 1067-1074.

23) Kenchappa, R., Bodke, YD., Telkar, S., ArunaSindhe, M. Antifungal and anthelmintic activity of novel benzofuran derivatives containing thiazolo benzimidazole nucleus: an in vitro evaluation. *J. Chem Biol.*, **2017**, 10, 11-23.

24) Sethi, P., Bansal, Y., Bansal, G. Synthesis and PASS-assisted evaluation of coumarin–benzimidazole derivatives as potential anti-inflammatory and anthelmintic agents. *Med. Chem. Res.*, **2018**, 27, 61-71.

25) Gaba, M., Singh, S., Mohan, C. Benzimidazole: an emerging scaffold for analgesic and anti-inflammatory agents. *Euro. J. Med. Chem.*, **2014**, 9, 494-505.

26) Gaba, M., Gaba, P., Uppal, D., Dhingra, N., Bahia, MS., Silakari, O., Mohan, C. Benzimidazole derivatives: search for GI-friendly anti-inflammatory analgesic agents. *Acta Pharm. Sin. B.*, **2015**, 1, 337-342.

27) Veerasamy, R., Roy, A., Karunakaran, R., Rajak, H. Structure–activity relationship analysis of benzimidazoles as emerging anti-inflammatory agents: An overview. *Pharmaceuticals.*, **2021**, 14, 1-31.

28) Narasimhan, B., Sharma, D., Kumar, P. Benzimidazole: a medicinally important heterocyclic moiety. *Med. Chem. Res.*, **2012**, 21, 269-283.

29) Patel, VM., Patel, NB., Chan-Bacab, MJ., Rivera, G. N-Mannich bases of benzimidazole as a potent antitubercular and antiprotozoal agents: Their synthesis and computational studies. *Synth. Commun.*, **2020**, 18, 858-878.

30) Pérez-Villanueva, J., Hernández-Campos, A., Yépez-Mulia, L., Méndez-Cuesta, C., Méndez-Lucio, O., Hernández-Luis, F., Castillo, R. Synthesis and antiprotozoal activity of novel 2-{[2-(1H-imidazol-1-yl) ethyl] sulfanyl}-1H-benzimidazole derivatives. *Bioorganic Med. Chem. Lett.*, **2013**, 15, 4221-4224.

31) Siddiqui, N., Alam, M., Ali, R., Yar, MS., Alam, O. Synthesis of new benzimidazole and phenylhydrazinecarbothiомide hybrids and their anticonvulsant activity. *Med Chem Res.*, **2016**, 25, 1390-1402.

32) Vasil'ev, PM., Kalitin, KY., Spasov, AA., Grechko, OY., Poroikov, VV., Filimonov, DA., Anisimova, VA. Prediction and study of anticonvulsant properties of benzimidazole derivatives. *Pharm. Chem J.*, **2017**, 50, 775-780.

33) Sahoo, BM., Banik, BK., Rao, NS., Raju, B. Microwave assisted green synthesis of benzimidazole derivatives and evaluation of their anticonvulsant activity. *Curr. Microw. Chem.*, **2019**, 1, 23-29.

34) Cheong, JE., Zaffagni, M., Chung, I., Xu, Y., Wang, Y., Jernigan, FE., Zetter, BR., Sun, L. Synthesis and anticancer activity of novel water soluble benzimidazole carbamates. *Euro. J. Med. Chem.*, **2018**, 20, 372-385.

35) Djemoui, A., Naouri, A., Ouahrani, MR., Djemoui, D., Lahcene, S., Lahrech, MB., Boukenna, L., Albuquerque, HM., Saher, L., Rocha, DH., Monteiro, FL. A step-by-

step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells. *J. Mol. Struct.*, **2020**, 15, 1-11.

36) Ibrahim, HA., Refaat, HM. Versatile mechanisms of 2-substituted benzimidazoles in targeted cancer therapy. *Future J. Pharm. Sci.*, **2020**, 6, 1-20.

37) Liu, X., Han, Y., Ge, X., Liu, Z. Imidazole and Benzimidazole Modified Half-Sandwich IridiumIIIN-Heterocyclic Carbene Complexes: Synthesis, Anticancer Application, and Organelle Targeting. *Front. Chem.*, **2020**, 17, 1-10.

38) Shaharyar, M., Mazumder, A. Benzimidazoles: A biologically active compounds. *Arab. J. Chem.*, **2017**, 1, S157-S173.

39) Faheem, M., Rathaur, A., Pandey, A., Kumar Singh, V., Tiwari, AK. A review on the modern synthetic approach of benzimidazole candidate. *ChemistrySelect.*, **2020**, 7, 3981-3994.

40) Kamal, A., Reddy, MK., Shaik, TB., Srikanth, YV., Reddy, VS., Kumar, GB., Kalivendi, SV. Synthesis of terphenyl benzimidazoles as tubulin polymerization inhibitors. *Euro. J. Med. Chem.*, **2012**, 1, 9-17.

41) Sahyon, HA., El-Binary, AA., Shoair, AF., Abdellatif, AA. Synthesis and characterization of ruthenium (III) complex containing 2-aminomethyl benzimidazole, and its anticancer activity of in vitro and in vivo models. *J. Mol. Liq.*, **2018**, 1, 122-134.

42) Tahlan, S., Kumar, S., Kakkar, S., Narasimhan, B. Benzimidazole scaffolds as promising antiproliferative agents: a review. *BMC Chem.*, **2019**, 13, 1-6.

43) Hori, A., Imaeda, Y., Kubo, K., Kusaka, M. Novel benzimidazole derivatives selectively inhibit endothelial cell growth and suppress angiogenesis in vitro and in vivo. *Cancer letters.*, **2002**, 8, 53-60.

44) Gil, L., Kazmierczak, M., Kroll-Balcerzak, R., Komarnicki, M. Bendamustine-based therapy as first-line treatment for non-Hodgkin lymphoma. *Medical Oncology.*, **2014**, 31, 1-7.

45) Lee, Y., Bae, KJ., Chon, HJ., Kim, SH., Kim, SA., Kim, J. A receptor tyrosine kinase inhibitor, dovitinib (TKI-258), enhances BMP-2-induced osteoblast differentiation in vitro. *Mol. Cells.*, **2016**, 31, 389-394.

46) Eilers, U., Klumperman, J., Hauri, HP. Nocodazole, a microtubule-active drug, interferes with apical protein delivery in cultured intestinal epithelial cells (Caco-2). *J. Cell Biol.*, **1989**, 108, 13-22.

47) Zimmermann, AE., Walters, JK., Katona, BG., Souney, PF., Levine, D. A review of omeprazole use in the treatment of acid-related disorders in children. *Clin.Ther.*, **2001**, 1, 660-679.

48) Pace, F., Pallotta, S., Casalini, S., Porro, GB. A review of rabeprazole in the treatment of acid-related diseases. *Ther. Clin.Risk Manag.*, **2007**, 3, 363-379.

49) Horton, J. Albendazole: a review of anthelmintic efficacy and safety in humans. *Parasitology.*, **2000**, 121, 113-132.

50) Kean, BH. Thiabendazole—A New Anthelmintic Drug. *Ann. Int. Med.*, **1967**, 1, 461-462.

51) McClellan, KJ., Goa, KL. Candesartan cilexetil. *Drugs.*, **1998**, 56, 847-869.

52) Raka, SC., Rahman, A., Hussain, F., Rahman, SA. Synthesis, characterization and in vitro, in vivo, in silico biological evaluations of substituted benzimidazole derivatives. *Saudi J. Biol. Sci.*, **2022**, 1, 239-250.

53) Sathyanarayana, R., Poojary, B., Srinivasa, SM., Merugumolu, VK., Chandrashekappa, RB., Rangappa, S. In vitro, in vivo and in silico-driven identification of novel benzimidazole derivatives as anticancer and anti-inflammatory agents. *J. Iran. Chem. Soc.*, **2021**, 22, 1-7.

54) Sireesha, R., Sreenivasulu, R., Chandrasekhar, C., Jadav, SS., Pavani, Y., Rao, MV., Subbarao, M. Design, synthesis, anti-cancer evaluation and binding mode studies of benzimidazole/benzoxazole linked β -carboline derivatives. *J. Mol. Struct.*, **2021**, 15, 1-10.

55) Ren, B., Liu, RC., Ji, K., Tang, JJ., Gao, JM. Design, synthesis and in vitro antitumor evaluation of novel pyrazole-benzimidazole derivatives. *Bioorg. Med. Chem. Lett.*, **2021**, 1, 1-6.

56) Chen, X., Yang, X., Mao, F., Wei, J., Xu, Y., Li, B., Zhu, J., Ni, S., Jia, L., Li, J. Development of novel benzimidazole-derived neddylation inhibitors for suppressing tumor growth in vitro and in vivo. *Euro. J. Med. Chem.*, **2021**, 15, 1-18.

57) Tang, L., Wu, W., Zhang, C., Shi, Z., Chen, D., Zhai, X., Jiang, Y. Discovery of the PARP (poly ADP-ribose polymerase) inhibitor 2-(1-(4, 4-difluorocyclohexyl)piperidin-4-yl)-1H-benzo [d] imidazole-4-carboxamide for the treatment of cancer. *Bioorg. Chem.*, **2021**, 1, 1-37.

58) Atmaca, H., İlhan, S., Batır, MB., Pulat, ÇÇ., Güner, A., Bektaş, H. Novel benzimidazole derivatives: Synthesis, in vitro cytotoxicity, apoptosis and cell cycle studies. *Chem. Biol. Interact.*, **2020**, 25, 1-23.

59) Haoran, W., Akhtar, W., Nainwal, LM., Kaushik, SK., Akhter, M., Shaquiquzzaman, M., Alam, MM. Synthesis and biological evaluation of benzimidazole pendant cyanopyrimidine derivatives as anticancer agents. *J. Heterocycl. Chem.*, **2020**, 57, 3350-3360.

60) Li, S., Yuan, B., Wang, X., Zhang, J., Yue, L., Hou, H., Hu, J., Chen, S. Crystal structure, DNA interaction and in vitro anticancer activity of Cu (II) and Pt (II) compounds based on benzimidazole-quinoline derivative. *Polyhedron*. **2020**, 15, 1-10.

61) Çapan, İ., Servi, S., Dalkılıç, S., Dalkılıç, LK. Synthesis and Anticancer Evaluation of Benzimidazole Derivatives Having Norbornene/Dibenzobarrelene Skeletons and Different Functional Groups. *ChemistrySelect*. **2020**, 7, 14393-14398.

62) Shinde, VS., Lawande, PP., Sontakke, VA., Khan, A. Synthesis of benzimidazole nucleosides and their anticancer activity. *Carbohydr Res.*, **2020**, 1, 1-5.

63) Kacar, S., Unver, H., Sahinturk, V. A mononuclear copper (II) complex containing benzimidazole and pyridyl ligands: Synthesis, characterization, and antiproliferative activity against human cancer cells. *Arab. J. Chem.*, **2020**, 1, 4310-4323.

64) Karadayi, FZ., Yaman, M., Kisla, MM., Keskus, AG., Konu, O., Ates-Alagoz, Z. Design, synthesis and anticancer/antiestrogenic activities of novel indole-benzimidazoles. *Bioorg. Chem.*, **2020**, 1, 1-20.

65) Yuan, X., Yang, Q., Liu, T., Li, K., Liu, Y., Zhu, C., Zhang, Z., Li, L., Zhang, C., Xie, M., Lin, J. Design, synthesis and in vitro evaluation of 6-amide-2-aryl benzoxazole/benzimidazole derivatives against tumor cells by inhibiting VEGFR-2 kinase. *Euro. J. Med. Chem.*, **2019**, 1, 147-165.

66) Mostafa, AS., Gomaa, RM., Elmorsy, MA. Design and synthesis of 2- phenyl benzimidazole derivatives as VEGFR- 2 inhibitors with anti- breast cancer activity. *Chem. Biol. Drug Des.*, **2019**, 93, 454-463.

67) Gao, QL., Wu, BW., Li, D., Shi, L., Zhu, T., Lou, JF., Jin, CY., Zhang, YB., Zhang, SY., Liu, HM. Novel tertiary sulfonamide derivatives containing benzimidazole moiety as potent anti-gastric cancer agents: Design, synthesis and SAR studies. *Euro. J. Med. Chem.*, **2019**, 1, 1-14.

68) Goud, NS., Ghose, SM., Vishnu, J., Komal, D., Talla, V., Alvala, R., Pranay, J., Kumar, J., Qureshi, IA., Alvala, M. Synthesis of 1-benzyl-1H-benzimidazoles as galectin-1 mediated anticancer agents. *Bioorg. Chem.*, **2019**, 1, 1-15.

69) Çevik, UA., Sağlık, BN., Ardiç, CM., Özkay, Y., Atlı, Ö. Synthesis and evaluation of new benzimidazole derivatives with hydrazone moiety as anticancer agents. *Turk. J. Biochem.*, **2018**, 1, 151-158.

70) Yadav, S., Narasimhan, B., Lim, SM., Ramasamy, K., Vasudevan, M., Shah, SA., Mathur, A. Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of benzimidazole derivatives. *Egypt. J. basic appl. sci.*, **2018**, 1, 100-109.

71) AcarÇevik, U., Sağlık, BN., Korkut, B., Özkay, Y., Ilgin, S. Antiproliferative, cytotoxic, and apoptotic effects of new benzimidazole derivatives bearing hydrazone moiety. *J. Heterocycl. Chem.*, **2018**, 55, 138-148.

72) Abdelgawad, MA., Bakr, RB., Omar, HA. Design, synthesis and biological evaluation of some novel benzothiazole/benzoxazole and/or benzimidazole derivatives incorporating a pyrazole scaffold as antiproliferative agents. *Bioorg. Chem.*, **2017**, 1, 82-90.

73) Karthikeyan, C., Solomon, VR., Lee, H., Trivedi, P. Synthesis and biological evaluation of 2-(phenyl)-3H-benzo [d] imidazole-5-carboxylic acids and its methyl esters as potent anti-breast cancer agents. *Arab. J. Chem.*, **2017**, 1, S1788-S1794.

74) Wu, LT., Jiang, Z., Shen, JJ., Yi, H., Zhan, YC., Sha, MQ., Wang, Z., Xue, ST., Li, ZR. Design, synthesis and biological evaluation of novel benzimidazole-2-substituted phenyl or pyridine propyl ketene derivatives as antitumour agents. *Euro. J. Med. Chem.*, **2016**, 23, 328-336.

75) Sharma, P., Thummuri, D., Reddy, TS., Senwar, KR., Naidu, VG., Srinivasulu, G., Bhargava, SK., Shankaraiah, N. New (E)-1-alkyl-1H-benzo [d] imidazol-2-yl) methylene) indolin-2-ones: Synthesis, in vitro cytotoxicity evaluation and apoptosis inducing studies. *Euro. J. Med. Chem.*, **2016**, 21, 584-600.

76) Mantu, D., Antoci, V., Moldoveanu, C., Zbancioc, G., Mangalagiu, II. Hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives and evaluation of their anticancer and antimycobacterial activity. *J. Enzyme Inhib Med Chem.*, **2016**, 2, 96-103.

77) Shaaban, MA., Kamal, AM., Teba, HE. Synthesis, characterisation and biological screening of some 2-substituted benzimidazole derivatives as potential anticancer agents. *J. Chem. Res.*, **2016**, 40, 228-234.

78) Abdallah, AE., Helal, MH., Elakabawy, NI. Heterocyclization, dyeing applications and anticancer evaluations of benzimidazole derivatives: novel synthesis of thiophene, triazole and pyrimidine derivatives. *Egypt J Chem.*, **2015**, 1, 699-719.

79) Reddy, TS., Kulhari, H., Reddy, VG., Bansal, V., Kamal, A., Shukla, R. Design, synthesis and biological evaluation of 1, 3-diphenyl-1H-pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis-inducing agents. *Euro. J. Med. Chem.*, **2015**, 28, 790-805.

80) Risley, VA., Henry, S., Kosyrikhina, MV., Manzanares, MR., Payan, I., Downer, CD., Hellmann, CC., Van Slambrouck, S., Frolova, LV. 4-Amino-2-aryl-3-cyano-1, 2-dihydropyrimido-[1, 2-a] benzimidazoles and their pyrimidine analogs as new anticancer agents. *Chem. Heterocycl. Compd.*, **2014**, 50, 185-194.

81) Błaszczyk-Świątkiewicz, K., Almeida, DC., Perry, MD., Mikiciuk-Olasik, E. Synthesis, anticancer activity and UPLC analysis of the stability of some new benzimidazole-4, 7-dione derivatives. *Molecules*. **2014**, 19, 400-413.

82) Yoon, YK., Ali, MA., Wei, AC., Shirazi, AN., Parang, K., Choon, TS. Benzimidazoles as new scaffold of sirtuin inhibitors: Green synthesis, in vitro studies, molecular docking analysis and evaluation of their anti-cancer properties. *Euro. J. Med. Chem.*, **2014**, 18, 448-454.

83) Noolvi, M., Agrawal, S., Patel, H., Badiger, A., Gaba, M., Zambre, A. Synthesis, antimicrobial and cytotoxic activity of novel azetidine-2-one derivatives of 1H-benzimidazole. *Arab. J. Chem.*, **2014**, 1, 219-226.

84) Paul, K., Bindal, S., Luxami, V. Synthesis of new conjugated coumarin-benzimidazole hybrids and their anticancer activity. *Bioorg. Med. Chem. Lett.*, **2013**, 15, 3667-3672.

85) Yurttaş, L., Demirayak, Ş., Çiftçi, GA., Yıldırım, ŞU., Kaplancıklı, ZA. Synthesis and Biological Evaluation of Some 1, 2- Disubstituted Benzimidazole Derivatives as New Potential Anticancer Agents. *Arch. Pharm.*, **2013**, 346, 403-414.

86) El-Shekeil, A., Obeid, AO., Al-Aghbari, S. Anticancer activity studies of some cyclic benzimidazole derivatives. *Euro. J. Med. Chem.*, **2012**, 30, 356-358.

87) Hranjec, M., Pavlović, G., Karminski-Zamola, G. Synthesis, crystal structure determination and antiproliferative activity of novel 2-amino-4-aryl-4, 10-dihydro [1, 3, 5] triazino [1, 2-a] benzimidazoles. *J. Mol Struct.*, **2012**, 11, 242-251.

88) Refaat, HM. Synthesis of potential anticancer derivatives of pyrido [1, 2-a] benzimidazoles. *Med Chem Res.*, **2012**, 21, 1253-1260.

89) Rashid, M., Husain, A., Mishra, R. Synthesis of benzimidazoles bearing oxadiazole nucleus as anticancer agents. *Euro. J. Med. Chem.*, **2012**, 1, 855-866.

90) Demirayak, S., Kayagil, I., Yurttas, L. Microwave supported synthesis of some novel 1, 3-Diarylpyrazino [1, 2-a] benzimidazole derivatives and investigation of their anticancer activities. *Euro. J. Med. Chem.*, **2011**, 1, 411-416.

91) Li, Y., Tan, C., Gao, C., Zhang, C., Luan, X., Chen, X., Liu, H., Chen, Y., Jiang, Y. Discovery of benzimidazole derivatives as novel multi-target EGFR, VEGFR-2 and PDGFR kinase inhibitors. *Bioorg. Med. Chem.*, **2011**, 1, 4529-4535.

92) Abdel- Aziz, HA., Gamal- Eldeen, AM., Hamdy, NA., Fakhr, IM. Immunomodulatory and Anticancer Activities of Some Novel 2- Substituted- 6- Bromo- 3- methylthiazolo [3, 2- a] benzimidazole Derivatives. *Arch. Pharm.*, **2009**, 342, 230-237.